★★★★☆
3.3 étoiles sur 5 de 989 notes
2019-03-30
Natural Language Processing Fundamentals: Build intelligent applications that can interpret the human language to deliver impactful results - de Sohom Ghosh, Dwight Gunning (Author)
Caractéristiques Natural Language Processing Fundamentals: Build intelligent applications that can interpret the human language to deliver impactful results
Le paragraphe suivant sont affichées des informations communes concernant Natural Language Processing Fundamentals: Build intelligent applications that can interpret the human language to deliver impactful results
Le Titre Du Fichier | Natural Language Processing Fundamentals: Build intelligent applications that can interpret the human language to deliver impactful results |
Date de Parution | 2019-03-30 |
Traducteur | Gurchetan Seann |
Numéro de Pages | 383 Pages |
Taille du fichier | 54.84 MB |
Langage | Français & Anglais |
Éditeur | JC Lattès |
ISBN-10 | 7514369635-FZS |
Format de Document | PDF AMZ ePub EGT SXW |
de (Auteur) | Sohom Ghosh, Dwight Gunning |
ISBN-13 | 735-5824022228-PSK |
Nom de Fichier | Natural-Language-Processing-Fundamentals-Build-intelligent-applications-that-can-interpret-the-human-language-to-deliver-impactful-results.pdf |
Télécharger Natural Language Processing Fundamentals: Build intelligent applications that can interpret the human language to deliver impactful results Livre PDF Gratuit
Natural language processing in artificial analysis
Découvrez et achetez Natural Language Processing with PyTorch Livraison en Europe à 1 centime seulement
Lisez « Natural Language Understanding and Intelligent Applications 5th CCF Conference on Natural Language Processing and Chinese Computing NLPCC 2016 and 24th International Conference on Computer Processing of Oriental Languages ICCPOL 2016 Kunming China December 2–6 2016 Proceedings » de
Natural Language Processing Fundamentals in AI Image Source I have already covered few fundamentals of NLP in my previous article
1 Language modeling 2 Hidden Markov models and tagging problems 3 Probabilistic contextfree grammars and the parsing problem 4 Statistical approaches to machine translation 5 Loglinear models and their application to NLP problems 6 Unsupervised and semisupervised learning in NLP
Data Science DS Machine Learning Natural Language Processing NLP EIT digital master school european master international master Tuition Fees This masters programs offer additional services
The book also assumes sufficient familiarity with Natural Language Processing NLP to understand why one would want to build lexicons grammars and parsers The book has several strengths It is tightly integrated with Python and NLTK code